What is Geothermal Energy?

La géothermie à Bruxelles / Geothermie in Brussel 2 nd February 2017

> **Bertrand François Université Libre de Bruxelles**

Marijke Huysmans Vrije Universiteit Brussel

Geothermal energy Introduction

Geothermal energy systems aim at extracting heat from the ground for heating or electricity production.

By extension, it includes also the systems that dissipate heat into the ground, for cooling purpose.

ULB Geothermal energy Introduction

Different systems for different applications, in different geological contexts

Shallow geothermal energy

Source: www.crege.ch

Géothermie de grande profondeur

Geothermal energy Introduction

ULB

JJ.

- **Heating and/or Cooling**
- **Energy Storage (ATES or BTES)**
- Sustainable (recoverable) heat source
- High performance of the heat pump (COP $>$ 4) due to stable temperature

ULB Geothermal energy The heat pump

The **heat pump** allows an exchange of heat between the primary circuit (in the ground) and the secondary circuit (in the building).

Geothermal energy COP – Coefficient of performance

ULB

2 nd February 2017 - Geothermal Energy - B. FRANCOIS / M. HUYSMANS – Page 6

Closed-loop systems Various types

Sub-surface tubes

- **Tubes set up in a 3 to 5 m depth excavation**
- Closed loop: heat exchanger fluid in tubes
- Ground temperature affected by seasonal variations

Tmax \approx 14°C in September

Tmin \approx 7°C in April

- Need large surface : 1 to 2 times the heated surface of the building
- Interaction with roots and plants

Closed-loop systems Various types

Sub-surface tubes

Source: www.lemoniteur.fr

Source: www.espace-eco-habitat.fr

ULB Closed-loop systems Various types

Borehole heat exchanger

- Boreholes of \approx 15 cm in diameter, 50 300 m in length
- **U tubes in borehole (closed loop)**
- Energy balance:

ground \approx 75-80 %

electricity for heat pump $\approx 20-25$ %

• Maximal power: 40 to 80 W / meter of probe

Borehole heat exchanger

ULB Closed-loop systems Various types

Heat exchanger geostructures

• **Structural role**

- No need of additional boreholes, the foundation is used as a heat exchanger
- **Piles, retaining walls, tunnels, pavements**
- U tubes in the geostructures
- Energy balance: ground \approx 75 %

electricity for heat pump $\approx 25 \%$

• Maximal power: 50 W / m of pile

Heat exchanger geostructures

Source: www.bine.info - © Katzenbach, Darmstadt Source: Adam and Markiewicz, Géotechnique 2009

ULB Closed-loop system Geothermal potential of the ground

Heat extraction in agreement with the geology

Source: VDI (2004)

Closed-loop system ULB Geothermal potential of the ground

Thermal response test (TRT)

The TRT apparatus provides a continuous water circulation inside a borehole heat exchanger with a constant heat input. The evolution of temperature of the fluid is recorded along time. It provides an average thermal conductivity of the ground.

Example: Good design

10 years of operation $T_0 = 14^{\circ}C$

Borehole length = 100 m

- Heat extraction = **8 kW (1800 h/year)**
- Averaged heat extraction = 16.4 W/m
- Thermal conductivity of the ground $=$ **2.5 W/m (saturated sand)**
- No groundwater flow

Example: Quite good design

10 years of operation $T_0 = 14^{\circ}C$

Borehole length = 100 m

- Heat extraction = **8 kW (1800 h/year)**
- Averaged heat extraction $= 16.4$ W/m
- Thermal conductivity of the ground $=$ **1.4 W/m (clay)**
- No groundwater flow

Example: Bad design – Excessive use of the system

10 years of operation $\left| \int_{13}^{13} \tau_0 = 14^{\circ}C \right|$

Borehole length = 100 m

- Heat extraction = **8 kW (3600 h/year)**
- Averaged heat extraction $=$ 36.8 W/m
- Thermal conductivity of the ground $=$ **1.4 W/m (clay)**
- No groundwater flow

Example: Quite good design

10 years of operation $T_0 = 14^{\circ}C$

- Borehole length = 100 m
- Heat extraction = **8 kW (3600 h/year)**
- Averaged heat extraction $=$ 36.8 W/m
- Thermal conductivity of the ground $=$ **1.4 W/m (clay)**
- **Groundwater flow = 10-7 m/s**

Example: Good design

2 nd February 2017 - Geothermal Energy - B. FRANCOIS / M. HUYSMANS – Page 19

Example: Bad design – Excessive use of the system

² nd February 2017 - Geothermal Energy - B. FRANCOIS / M. HUYSMANS – Page 20

Unbalanced system Well - balanced system

Source: CSTC-NIT 259

Due to low thermal properties of ground and/or excessive use of the system

Due to thermal recharge during recovery period and/or reversible heating/cooling

Closed-loop systems ULB Partial conclusions

- Closed-loop systems are **possible (almost) everywhere**
- The efficiency of the system depends on **the ground characteritics** and the good design of the system
- The design must be done in agreement with the ground and the need of the building
- **Reversible heating/cooling** strongly improves the efficiency of the system (BTES)
- **Coefficient of perfomance** larger than 5 can be expected (when well designed)

Aquifer Thermal Energy Storage (ATES)

- Store energy in aquifer
- Open connection to the groundwater
- Pumping and injection wells
- Depths of several tens of meters to approximately 200m

(Mathias Possemiers, 2015)

Aquifer Thermal Energy Storage (ATES)

Applications

- •Energy savings and CO2 reduction
- •Larger buildings (offices, hospitals, shopping centers, …)
- •Horticulture
- from 200-300 kW
- Energy savings up to 85-95% for cooling and 40-60% for heating

Factors influencing feasibility and efficiency

Aquifer Thermal Energy Storage (ATES)

- Geology and hydrogeology
	- Saturated thickness of aquifer
	- Hydraulic conductivity of aquifer
	- Depth of aquifer
	- Groundwater flow velocity
	- Redox conditions
- Legislation

2 nd February 2017 - Geothermal Energy - B. FRANCOIS / M. HUYSMANS – Page 26

Ford and Wong, 2010

Aquifer Thermal Energy Storage (ATES)

Environmental impacts and risks

- •Mixing of groundwater
- •Interference with soil and groundwater pollution
- •Effects of groundwater level changes on ecology and subsidence
- •Temperature effects limited in case of limited temperature range
- •Interference with other systems

Questions?

Bertrand FRANCOIS Université Libre de Bruxelles bertrand.francois@ulb.ac.be

Marijke Huysmans Vrije Universiteit Brussel marijke.huysmans@vub.ac.be

